Add like
Add dislike
Add to saved papers

A two-stage estimation procedure for non-linear structural equation models.

Biostatistics 2019 January 30
Applications of structural equation models (SEMs) are often restricted to linear associations between variables. Maximum likelihood (ML) estimation in non-linear models may be complex and require numerical integration. Furthermore, ML inference is sensitive to distributional assumptions. In this article, we introduce a simple two-stage estimation technique for estimation of non-linear associations between latent variables. Here both steps are based on fitting linear SEMs: first a linear model is fitted to data on the latent predictor and terms describing the non-linear effect are predicted by their conditional means. In the second step, the predictions are included in a linear model for the latent outcome variable. We show that this procedure is consistent and identifies its asymptotic distribution. We also illustrate how this framework easily allows the association between latent variables to be modeled using restricted cubic splines, and we develop a modified estimator which is robust to non-normality of the latent predictor. In a simulation study, we compare the proposed method to MLE and alternative two-stage estimation techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app