Add like
Add dislike
Add to saved papers

Activated Sludge Morphology Significantly Impacts Oxygen Transfer at the Air-Liquid Boundary.

Oxygen transfer is a key process determining the energy use of a biological wastewater treatment process. In this research, we investigated the effect of sludge morphology, especially the role of filamentous microorganisms, on oxygen transfer using bench-scale complete-mix activated sludge reactors with solids retention times (SRTs) of 10-, 20-, and 40-days, respectively. Results indicated 5 - 10% reduced aeration need in the 40-day SRT reactor, compared to 10- and 20-day SRT reactors to maintain the same dissolved oxygen level, due to the improvement in sludge settleability and oxygen transfer efficiency (OTE). Filamentous microorganisms adversely impacted OTE via an increase in apparent viscosity of the mixed liquor, which resulted in an increase in the air bubble size and liquid film thickness and, therefore, limited oxygen transfer at the air-liquid boundary. A statistical analysis also confirmed that the mixed liquor viscosity is a statistically significant parameter links to OTE. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app