Add like
Add dislike
Add to saved papers

Urate-lowering therapy alleviates atherosclerosis inflammatory response factors and neointimal lesions in a mouse model of induced carotid atherosclerosis.

FEBS Journal 2019 January 29
Hyperuricemia (HU) is a cause of gout. Clinical studies show a link between HU and cardiovascular disease. However, the role of soluble serum urate (SU) on atherosclerosis development remains elusive. We aimed to use a new HU mouse model [Uricase/Uox knockout (KO)] to further investigate the relationship between HU and atherosclerosis. A mouse model by perivascular collar placement of induced carotid atherosclerosis was established in male Uox-KO mice. The Uox-KO mice had elevated SU levels and enhanced levels of atherosclerosis inflammatory response proteins. In contrast, Uox-KO mice with carotid atherosclerosis showed severe neointimal changes in histology staining consistent with increases in intimal area and increases in proliferating cell nuclear antigen (PCNA)- and F4/80-positive cells. Allopurinol reduced neointimal areas induced by the perivascular collar in hyperuricemic mice, accompanied by decreased expression of PCNA- and F4/80-positive cells. Urate-lowering treatment alleviated atherosclerosis inflammatory response factors and reactive oxygen species (ROS) intensities in both collar placement Uox-KO mice and urate-stimulated human umbilical vein endothelial cells (HUVECs). In vitro results using HUVECs showed ROS was induced by urate and ROS induction was abrogated using antioxidants. These data demonstrate that urate per se does not trigger atherosclerosis intima lesions in male mice. Urate worsens carotid neointimal lesions induced by the perivascular collar and urate-lowering therapy partially abrogates the effects. The current study warrants clinical studies on the possible benefits of urate-lowering therapy in atherosclerosis patients with HU.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app