Journal Article
Review
Add like
Add dislike
Add to saved papers

Graphynes for Water Desalination and Gas Separation.

Advanced Materials 2019 January 29
Selective transport of mass through membranes, so-called separation, is fundamental to many industrial applications, e.g., water desalination and gas separation. Graphynes, graphene analogs yet containing intrinsic uniformly distributed pores, are excellent candidates for highly permeable and selective membranes owing to their extreme thinness and high porosity. Graphynes exhibit computationally determined separation performance far beyond experimentally measured values of commercial state-of-the-art polyamide membranes; they also offer advantages over other atomically thin membranes like porous graphene in terms of controllability in pore geometry. Here, recent progress in proof-of-concept computational research into various graphynes for water desalination and gas separation is discussed, and their theoretically predicted outstanding permeability and selectivity are highlighted. Challenges associated with the future development of graphyne-based membranes are further analyzed, concentrating on controlled synthesis of graphyne, maintenance of high structural stability to withstand loading pressures, as well asthe demand for accurate computational characterization of separation performance. Finally, possible directions are discussed to align future efforts in order to push graphynes and other 2D material membranes toward practical separation applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app