Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TherMouseDuino: An affordable Open-Source temperature control system for functional magnetic resonance imaging experimentation with mice.

INTRODUCTION: Functional magnetic resonance imaging (fMRI) is one of the most highly regarded techniques in the neuroimaging field. This technique is based on vascular responses to neuronal activation and is extensively used in clinical and animal research studies. In preclinical settings, fMRI is usually applied to anesthetized animals. However, anesthetics cause alterations, e.g. hypothermia, in the physiology of the animals and this has the potential to disrupt fMRI signals. The current temperature control method involves a technician, as well as monitoring the acquisition MRI sequences, also controlling the temperature of the animal; this is inefficient.

METHODS: In order to avoid hypothermia in anesthetized rodents an Open-Source automatic temperature control device is presented. It takes signals from an intrarectal temperature sensor, as well as signals from a thermal bath, which warms up the body of the animal under study, in order to determine the mathematical model of the thermal response of the animal.

RESULTS: A Proportional-Integral-Derivative (PID) algorithm, which was discretized in an Arduino microcontroller, was developed to automatically keep stable the body temperature of the animal under study. The PID algorithm has been shown to be accurate in preserving the body temperature of the animal.

CONCLUSION: This work presents the TherMouseDuino. It is an Open-Source automatic temperature control system and reduces temperature fluctuations, thus providing robust conditions in which to perform fMRI experiments. Furthermore, our device frees up the technician to focus solely on monitoring the MRI sequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app