Add like
Add dislike
Add to saved papers

Time-lapse imaging of Ca 2+ -induced swelling and permeability transition: Single mitochondrion study.

Mitochondrial functions are closely related to the membrane structure. Mitochondrial swelling, which is accompanied with dissipation of the crista structure and rupture of the outer membrane, have been observed as mitochondrial damage when mitochondria are under Ca2+ -overload or oxidative stress. Although these phenomena have been well studied, the detailed behaviors of individual mitochondria upon swelling remain unknown. The aim of this study was to investigate the detailed behavior of mitochondrial volume upon addition of Ca2+ . Here, we report for the first time, time-lapse measurements of single mitochondrion swelling and permeability transition induced by Ca2+ by optical microscopy. We added 220 μM Ca2+ to mitochondria, and found that 1) the swelling rate depended on the mitochondrion, 2) a small number of mitochondria showed step-like swelling, 3) cyclosporin A decreased the percentage of mitochondria that underwent swelling induced by Ca2+ , but did not affect the amplitude of swelling, 4) permeability transition is necessary but not sufficient for Ca2+ -induced swelling, 5) permeability transition is more sensitive to Ca2+ than swelling, 6) Ca2+ stimulated mitochondrial swelling after permeability transition. These results suggest that single mitochondrion measurement of swelling is a powerful tool for examining the regulation of mitochondrial structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app