Add like
Add dislike
Add to saved papers

Endoplasmic Reticulum Stress Contributes to Mitochondrial Exhaustion of CD8 T cells.

Tumor antigen-specific T cells rapidly lose energy and effector function in tumors. The cellular mechanisms by which energy loss and inhibition of effector function occur in tumor infiltrating lymphocytes (TILs) are ill-defined, and methods to identify tumor-antigen-specific TILs that experience such stress are unknown. Processes upstream of the mitochondria guide cell-intrinsic energy depletion. We hypothesized that a mechanism of T cell-intrinsic energy consumption was the process of oxidative protein folding and disulfide-bond formation that takes place in the endoplasmic reticulum (ER) guided by protein kinase R-like endoplasmic reticulum kinase (PERK) and downstream PERK axis target ER oxidoreductase 1 (ERO1α). To test this hypothesis, we created TCR transgenic mice with a T cell-specific PERK gene deletion (OT1+Lckcre+PERKf/f, PERK KO). We found that PERK KO and T cells that were pharmacologically inhibited by PERK or ERO1α maintained reserve energy and exhibited a protein profile consistent with reduced oxidative stress. These T cell groups displayed superior tumor control compared to T effectors. We identified a biomarker of ER-induced mitochondrial exhaustion in T cells as mitochondrial reactive oxygen species (mtROS), and found that PD-1+ tumor antigen-specific CD8+ TILs express mtROS. In vivo treatment with a PERK inhibitor abrogated mtROS in PD-1+ CD8+ TILs and bolstered CD8+ TIL viability. Combination therapy enabled 100% survival and 71% tumor clearance in a sarcoma mouse model. Our data identify the ER as a regulator of T cell energetics and indicate that ER elements are effective targets to improve cancer immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app