Add like
Add dislike
Add to saved papers

Resin extract obtained from Cilician fir (Abies Cilicica) inhibits glucose dependent inflammation in vitro.

Objective: The potential anti-inflammatory efficacy of resin extract of Abies cilicica in glucose dependent inflammation and tumor necrosis factor alpha (TNF-a) induced inflammation models was investigated. Its effects on monocyte adhesion, gene expression levels of P-selectin, ICAM-1, VCAM1 and transendothelial migration for the two in vitro models were measured. Also, total flavonoid and total phenolic contents of the extract were determined.

Objective: Monocyte adhesion tests showed that the extract increased 100% inflammatory effect of TNF-a induced inflammation. On the other hand, it did not change number of adherent monocytes in glucose dependent inflammation model. Although the extract has trigger effect on monocyte adhesion, it did not change migration of leukocytes across ECV304 cells after administration of TNFa on ECV304 cells. The number of migrated monocytes was similar with only TNFa incubation experiment results. However, it significantly decreased monocyte migration in glucose dependent inflammation model. In our both experimental inflammation model, ICAM-1 expression significantly decreased. Although it is known that triggering effect of TNF-a on ICAM-1 expression, the content of of resin extract of A. cilicica prevented this effect. Phenolic antioxidant capacity of the extract are higher than its flavonoid contents.This study provides the first evidence that the extract inhibits glucose dependent inflammation. It may serve as an anti-inflammatory agent in the treatment of chronic inflammation caused by diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app