Add like
Add dislike
Add to saved papers

Mirabegron induces relaxant effects via cAMP signaling-dependent and -independent pathways in detrusor smooth muscle.

OBJECTIVE: We previously found that mirabegron exerts a relaxant effect in the presence of the β3 -adrenoceptor antagonist SR58894A during carbachol-induced contraction in human and pig detrusor. The aim of this study was to explore the possible mechanism underlying the relaxant effects of mirabegron using detrusor smooth muscle.

METHODS: Human tissue was obtained from urinary bladders of patients undergoing radical cystectomy at Kyushu University and Harasanshin Hospital. Pig tissue was obtained from an abattoir. Tension force (organ bath experiments) was measured in intact or permeabilised (α-toxin or β-escin) detrusor smooth muscle strips. The contribution of cAMP-dependent signaling and the inhibition of Ca2+ sensitization to the relaxant effects of mirabegron were characterized using 1 μM SR58894A, 100 μM SQ22536 (an adenylyl cyclase inhibitor), 10 μM H-89 (a protein kinase [PK] A inhibitor), 10 μM Y-27632 (a selective Rho kinase inhibitor), and 10 μM GF-109203X (a selective PKC inhibitor).

RESULTS: 30 μM Mirabegron impaired carbachol (0.03-1 μM)-induced contraction in human detrusor smooth muscle. SR58894A only partially attenuated the relaxant effects of mirabegron in human and pig detrusor strips precontracted with 1 μM carbachol. In α-toxin-permeabilized detrusor strips, tension force at 1 μM [Ca2+ ]i was decreased by mirabegron in a concentration-dependent manner. The relaxant effect of mirabegron was only slightly attenuated by H-89 and not significantly affected by SQ22536. Y-27632 potentiated the relaxation response to mirabegron, but attenuated responses to cAMP; GF-109203X had little effect. Mirabegron but not cAMP had a notable relaxant effect in the pig detrusor smooth muscle permeabilized with β-escin.

CONCLUSIONS: Mirabegron-induced relaxation of pig and human detrusor smooth muscle occurs via both a β3 -adrenoceptor/cAMP-dependent and -independent pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app