Add like
Add dislike
Add to saved papers

Size scaling of nucleolus in Caenorhabditis elegans embryos.

Biomedical Journal 2018 October
Nucleolus is viewed as a plurifunctional center in the cell, tightly linked to ribosome biosynthesis. As a non-membranous structure, how the size of nucleolus is determined is a long outstanding question, and the possibility of "direct size scaling to the nucleus" was raised by genetic studies in fission yeast. Here, we used the model organism Caenorhabditis elegans to test this hypothesis in multi-cellular organisms. We depleted ani-2, ima-3, or C27D9.1 by RNAi feeding, which altered embryo sizes to different extents in ncl-1 mutant worms. DIC imaging provided evidence that in size-altering embryo nucleolar size decreases in small cells and increases in large cells. Furthermore, analyses of nucleolar size in four blastomeres (ABa, ABp, EMS, and P2) within the same embryo of ncl-1 mutants consistently demonstrated the correspondence between cell and nucleolar sizes - the small cells (EMS and P2) have smaller nucleoli in comparison to the large cells (ABa).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app