Add like
Add dislike
Add to saved papers

Cytotoxicity and autophagy induction by graphene quantum dots with different functional groups.

Graphene quantum dots (GQDs) possess great potential in various applications due to their superior physicochemical properties and wide array of available surface modifications. However, the toxicity of GQDs has not been systematically assessed, thus hindered their further development; especially, the risk of surface modifications of GQDs is largely unknown. In this study, we employed a lung carcinoma A549 cells as the model to investigate the cytotoxicity and autophagy induction of three types GQDs, including cGQDs (COOH-GQDs), hGQDs (OH-GQDs), and aGQDs (NH2 -GQDs). The results showed hGQDs was the most toxic, as significant cell death was induced at the concentration of 100 μg/mL, determining by WST-1 assay as well as Annexin-V-FITC/PI apoptosis analysis, whereas cGQDs and aGQDs were non-cytotoxic within the measured concentration. Autophagy detection was performed by TEM examination, LC3 fluorescence tracking, and Western-blot. Both aGQDs and hGQDs induced cellular autophagy to various degrees except for cGQDs. Further analysis on autophagy pathways indicated all GQDs significantly activated p-p38MAPK; p-ERK1/2 was inhibited by aGQDs and hGQDs but activated by cGQDs. p-JNK was inhibited by aGQDs and cGQDs, while activated by hGQDs. Simultaneously, Akt was activated by hGQDs but inhibited by aGQDs. Inhibition of autophagy by 3-MA significantly increased the cytotoxicity of GQDs, suggesting that autophagy played a protective role against the toxicity of GQDs. In conclusion, cGQDs showed excellent biocompatibility and may be considered for biological applications. Autophagy induction may be included in the health risk assessment of GQDs as it reflects the stress status which may eventually lead to diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app