Add like
Add dislike
Add to saved papers

Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency.

Chemical Science 2018 November 15
Isomers with small structural changes usually exhibit different properties. Rationally designing isomers of some high-performance SMAs can further enhance their function. In this work, an asymmetrical small molecule acceptor (SMA) MeIC1 isomerized from MeIC is reported. Compared with the symmetrical MeIC, the asymmetrical isomer showed almost the same absorption range but an elevated LUMO energy level and simultaneously enhanced π-π stacking and electron mobility by replacing the thieno[3,2- b ]thiophene unit with a larger sized dithieno[3,2- b :2',3'- d ]thiophene unit in the ladder-type core of MeIC. As a result, the MeIC1-based PSCs achieved a higher PCE up to 12.58% with a promoted V oc and J sc and an unchanged FF compared with those of MeIC-based PSCs when blended with PBDB-T. This work reveals that asymmetrical isomerization is effective for PCE promotion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app