Journal Article
Review
Add like
Add dislike
Add to saved papers

Hot spots for GPCR signaling: lessons from single-molecule microscopy.

G protein-coupled receptors (GPCRs) are among the best-studied membrane receptors, mainly due to their central role in human physiology, involvement in disease and relevance as drug targets. Although biochemical and pharmacological studies have characterized the main steps in GPCR signaling, how GPCRs produce highly specific responses in our cells remains insufficiently understood. New developments in single-molecule microscopy have made it possible to study the protein-protein interactions at the basis of GPCR signaling in previously inconceivable detail. Using this approach, it was recently possible to follow individual receptors and G proteins as they diffuse, interact and signal on the surface of living cells. This has revealed hot spots on the plasma membrane, where receptors and G proteins undergo transient interactions to produce rapid and local signals. Overall, these recent findings reveal a high degree of dynamicity and complexity in signaling by GPCRs, which provides a new basis to understand how these important receptors produce specific effects and might pave the way to innovative pharmacological approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app