Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Single stream inertial focusing in low aspect-ratio triangular microchannels.

Lab on a Chip 2018 December 19
A wide range of microfluidic devices for single stream focusing of cells and particles has emerged in recent years, based on both passive and active methods. Inertial microfluidics offers an attractive alternative to these methods, providing efficient and sheathless passive focusing of cells and beads. Nevertheless, in rectangular microchannels, the presence of multiple equilibrium positions necessitates complicated solutions involving manipulation of the 3D structure in order to achieve single stream flows. Here, we present a new approach to single-stream inertial focusing based on a triangular microchannel geometry. Changing the channel cross-sectional shape leads to asymmetry in the velocity profile, resulting in a size-dependent single stable equilibrium position near the channel apex. We demonstrate that soft lithography masters for such microchannels can be fabricated using PMMA through micromilling, and 15 μm diameter beads can be efficiently focused into a single stream. Confocal microscopy was used to confirm the focusing positions in the microchannel cross-section. We further integrated this device with a laser counting system to form a sheathless flow cytometer and demonstrated the counting of beads with an ∼326 s -1 throughput. The use of a triangular cross-section offers a number of benefits, including simplicity of the fundamental principle and geometry, control of design, a small footprint, and ease of integration, as well as high-precision single position focusing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app