Add like
Add dislike
Add to saved papers

Flight feather moult drives minimum daily heart rate in wild geese.

Biology Letters 2018 November 29
Waterfowl undergo an annual simultaneous flight-feather moult that renders them flightless for the duration of the regrowth of the flight feathers. In the wild, this period of flightlessness could restrict the capacity of moulting birds to forage and escape predation. Selection might therefore favour a short moult, but feather growth is constrained and presumably energetically demanding. We therefore tested the hypothesis that for birds that undergo a simultaneous flight-feather moult, this would be the period in the annual cycle with the highest minimum daily heart rates, reflecting these increased energetic demands. Implantable heart rate data loggers were used to record year-round heart rate in six wild barnacle geese ( Branta leucopsis ), a species that undergoes a simultaneous flight-feather moult. The mean minimum daily heart rate was calculated for each individual bird over an 11-month period, and the annual cycle was divided into seasons based on the life-history of the birds. Mean minimum daily heart rate varied significantly between seasons and was significantly elevated during wing moult, to 200 ± 32 beats min-1 , compared to all other seasons of the annual cycle, including both the spring and autumn migrations. The increase in minimum daily heart rate during moult is likely due to feather synthesis, thermoregulation and the reallocation of minerals and protein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app