Add like
Add dislike
Add to saved papers

Time-of-flight electron energy loss spectroscopy by longitudinal phase space manipulation with microwave cavities.

The possibility to perform high-resolution time-resolved electron energy loss spectroscopy has the potential to impact a broad range of research fields. Resolving small energy losses with ultrashort electron pulses, however, is an enormous challenge due to the low average brightness of a pulsed beam. In this paper, we propose to use time-of-flight measurements combined with longitudinal phase space manipulation using resonant microwave cavities. This allows for both an accurate detection of energy losses with a high current throughput and efficient monochromation. First, a proof-of-principle experiment is presented, showing that with the incorporation of a compression cavity the flight time resolution can be improved significantly. Then, it is shown through simulations that by adding a cavity-based monochromation technique, a full-width-at-half-maximum energy resolution of 22 meV can be achieved with 3.1 ps pulses at a beam energy of 30 keV with currently available technology. By combining state-of-the-art energy resolutions with a pulsed electron beam, the technique proposed here opens up the way to detecting short-lived excitations within the regime of highly collective physics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app