Add like
Add dislike
Add to saved papers

Mesoporous Silica-Based Nanoparticles for Light-Actuated Biomedical Applications via Near-Infrared Two-Photon Absorption.

Enzymes 2018
In this review, we highlight the design of nanomaterials for two-photon excitation, in order to treat tumors with a high accuracy. Indeed two-photon excitation allows remote control of the nanoparticles with a spatio-temporal resolution. The nanomaterials are based on mesoporous silica-organosilica nanoparticles including core-shell systems. The therapeutic treatments include drug delivery, photodynamic therapy, gene silencing, and their combinations. At first, the nanosystems designed for two-photon-triggered cytotoxic drug delivery are reviewed. Then the nanomaterials prepared for two-photon photodynamic therapy and reactive oxygen species delivery are discussed. Finally, the nanosystems combining drug delivery or gene silencing with two-photon photodynamic therapy are presented. Due to the rapid progresses concerning two-photon-excited nanomaterials and the interest of near-infrared light to treat deep tumors, we believe this technology could be of high interest for the personalized medicine of the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app