Add like
Add dislike
Add to saved papers

Numerical investigation of the effect of vessel size and distance on the cryosurgery of an adjacent tumor.

Cryosurgery is an efficient cancer treatment which can be used for non-invasive ablation of some internal tumors such as liver and prostate. Tumors are usually located near the large blood vessels and the heat convection may affect the progression of the ice ball. Hence it is necessary to predict the surgery procedure and its consequences earlier. In spite of the recent studies it is still unclear that which arteries will significantly affect the freezing treatment of tumors and which can be ignored. Therefore a numerical model of a spherical 3 cm diameter liver tumor, subjected to cryosurgery was developed. The specific thermophysical properties were applied to the tumor and healthy tissues in frozen and unfrozen states. A simplified Hepatic artery with different anatomical diameters was placed in different positions relative to the tumor and energy and momentum equations were solved. The temperature distribution and the shape of the resultant ice ball were discussed. The results showed that a 4 mm diameter artery in the vicinity of a tumor will increase the minimum temperature achieved at the tumor boundary by 12.5 °C and therefore significantly affects the cryosurgery outcome. This may cause insufficient freezing which leads to incomplete death of tumor cells, failure of the surgery and tumor regenesis. Eventually it was shown that injection of gold and Fe3 O4 nanoparticles to the surrounding tissue of the artery can enhance the heat transfer and progression of the ice ball, making temperature distribution similar to the no vessel state. Development of computational models can provide the physicians an applicable tool which helps them recognize how efficient a treatment method will be for a specific case and design a suitable cryosurgery plan.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app