Add like
Add dislike
Add to saved papers

Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype.

RNA-based, multi-gene molecular assays are available and widely used for patients with ER-positive/HER2-negative breast cancers. However, RNA-based genomic tests can be costly and are not available in many countries. Methods for inferring molecular subtype from histologic images may identify patients most likely to benefit from further genomic testing. To identify patients who could benefit from molecular testing based on H&E stained histologic images, we developed an image analysis approach using deep learning. A training set of 571 breast tumors was used to create image-based classifiers for tumor grade, ER status, PAM50 intrinsic subtype, histologic subtype, and risk of recurrence score (ROR-PT). The resulting classifiers were applied to an independent test set ( n  = 288), and accuracy, sensitivity, and specificity of each was assessed on the test set. Histologic image analysis with deep learning distinguished low-intermediate vs. high tumor grade (82% accuracy), ER status (84% accuracy), Basal-like vs. non-Basal-like (77% accuracy), Ductal vs. Lobular (94% accuracy), and high vs. low-medium ROR-PT score (75% accuracy). Sampling considerations in the training set minimized bias in the test set. Incorrect classification of ER status was significantly more common for Luminal B tumors. These data provide proof of principle that molecular marker status, including a critical clinical biomarker (i.e., ER status), can be predicted with accuracy >75% based on H&E features. Image-based methods could be promising for identifying patients with a greater need for further genomic testing, or in place of classically scored variables typically accomplished using human-based scoring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app