Add like
Add dislike
Add to saved papers

Structural characterisation of a full-length mitochondrial outer membrane TOM40 preprotein translocase: implications for its interaction with presequence peptides.

Tom40, the central component of the preprotein translocase of the mitochondrial outer membrane (TOM complex), forms the import pore that facilitates the translocation of preproteins across the outer membrane. Though the function of Tom40 has been intensively studied, the details of the interactions between presequence peptides and Tom40 remain unclear. In this study, we expressed rat Tom40 in Escherichia coli and purified it from inclusion bodies before investigating the refolded protein by fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The far-UV CD spectra of the refolded Tom40 in various concentrations of urea revealed that the refolded protein has a well-defined structure consisting mainly of β-sheet. Moreover, the specific binding of presequence peptides to Tom40, which was demonstrated by fluorescence quenching, showed that the refolded purified protein is functional and that the interaction between Tom40 and presequence peptides is mainly electrostatic in nature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app