Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Convolutional Neural Network With Shape Prior Applied to Cardiac MRI Segmentation.

In this paper, we present a novel convolutional neural network architecture to segment images from a series of short-axis cardiac magnetic resonance slices (CMRI). The proposed model is an extension of the U-net that embeds a cardiac shape prior and involves a loss function tailored to the cardiac anatomy. Since the shape prior is computed offline only once, the execution of our model is not limited by its calculation. Our system takes as input raw magnetic resonance images, requires no manual preprocessing or image cropping and is trained to segment the endocardium and epicardium of the left ventricle, the endocardium of the right ventricle, as well as the center of the left ventricle. With its multiresolution grid architecture, the network learns both high and low-level features useful to register the shape prior as well as accurately localize the borders of the cardiac regions. Experimental results obtained on the Automatic Cardiac Diagnostic Challenge - Medical Image Computing and Computer Assisted Intervention (ACDC-MICCAI) 2017 dataset show that our model segments multislices CMRI (left and right ventricle contours) in 0.18 s with an average Dice coefficient of [Formula: see text] and an average 3-D Hausdorff distance of [Formula: see text] mm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app