Add like
Add dislike
Add to saved papers

Dual-layer Strengthened Collaborative Topic Regression Modeling for Predicting Drug Sensitivity.

An effective way to facilitate the development of modern oncology precision medicine is the systematical analysis of the known drug sensitivities that have emerged in recent years. Meanwhile, the screening of drug response in cancer cell lines provides an estimable genomic and pharmacological data towards high accuracy prediction. Existing works primarily utilize genomic or functional genomic features to classify or regress the drug response. Here in this work, by the migration and extension of the conventional merchandise recommendation methods, we introduce an innovation model on accurate drug sensitivity prediction by using dual-layer strengthened collaborative topic regression (DS-CTR), which incorporates not only the graphic model to jointly learn drugs and cell lines feature from pharmacogenomics data but also drug and cell line similarity network model to strengthen the correlation of the prediction results. Using Genomics of Drug Sensitivity in Cancer project (GDSC) as benchmark datasets, the 5-fold cross-validation experiment demonstrates that DS-CTR model significantly improves drug response prediction performance compared with four categories of state-of-the-art algorithms as for both Receiver Operator Curve (ROC) and the Area Under Receiver Operator Curve (AUC). By uncovering the unknown cell-drug associations with advanced literature evidences, our novel model DS-CTR is validated and supported. The model also provides the possibility to make the discovery of new anti-cancer therapeutics in the preclinical trials cheaper and faster.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app