Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Detecting Protein Subcellular Localization by Green Fluorescence Protein Tagging and 4',6-Diamidino-2-phenylindole Staining in Caenorhabditis elegans.

In this protocol, a green fluorescence protein (GFP) fusion protein and 4',6-diamidino-2-phenylindole (DAPI) staining are used to track protein subcellular localization changes; in particular, a nuclear translocation under a heat stress condition. Proteins react correspondingly to external and internal signals. A common mechanism is to change its subcellular localization. This article describes a protocol to track protein localization that does not require an antibody, radioactive labeling, or a confocal microscope. In this article, GFP is used to tag the target protein EXL-1 in C. elegans, a member of the chloride intracellular channel proteins (CLICs) family, including mammalian CLIC4. An integrated translational exl-1::gfp transgenic line (with a promoter and a full gene sequence) was created by transformation and γ-radiation, and stably expresses the gene and gfp. Recent research showed that upon heat stress, not oxidative stress, EXL-1::GFP accumulates in the nucleus. Overlapping the GFP signal with both the nuclei structure and the DAPI signals confirms the EXL-1 subcellular localization changes under stress. This protocol presents two different fixation methods for DAPI staining: ethanol fixation and acetone fixation. The DAPI staining protocol presented in this article is fast and efficient and preserves both the GFP signal and the protein subcellular localization changes. This method only requires a fluorescence microscope with Nomarski, a FITC filter, and a DAPI filter. It is suitable for a small laboratory setting, undergraduate student research, high school student research, and biotechnology classrooms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app