Add like
Add dislike
Add to saved papers

Loss or duplication of key regulatory genes coincides with environmental adaptation of the stomatal complex in Nymphaea colorata and Kalanchoe laxiflora .

The stomatal complex is critical for gas and water exchange between plants and the atmosphere. Originating over 400 million years ago, the structure of the stomata has evolved to facilitate the adaptation of plants to various environments. Although the molecular mechanism of stomatal development in Arabidopsis has been widely studied, the evolution of stomatal structure and its molecular regulators in different species remains to be answered. In this study, we examined stomatal development and the orthologues of Arabidopsis stomatal genes in a basal angiosperm plant, Nymphaea colorata , and a member of the eudicot CAM family, Kalanchoe laxiflora , which represent the adaptation to aquatic and drought environments, respectively. Our results showed that despite the conservation of core stomatal regulators, a number of critical genes were lost in the N. colorata genome, including EPF2, MPK6, and AP2C3 and the polarity regulators BASL and POLAR. Interestingly, this is coincident with the loss of asymmetric divisions during the stomatal development of N. colorata . In addition, we found that the guard cell in K. laxiflora is surrounded by three or four small subsidiary cells in adaxial leaf surfaces. This type of stomatal complex is formed via repeated asymmetric cell divisions and cell state transitions. This may result from the doubled or quadrupled key genes controlling stomatal development in K. laxiflora . Our results show that loss or duplication of key regulatory genes is associated with environmental adaptation of the stomatal complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app