Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Endonuclease-independent DNA mismatch repair processes on the lagging strand.

DNA Repair 2018 August
DNA mismatch repair (MMR) pathways coordinate the excision and re-synthesis of newly-replicated DNA if a mismatched base-pair has been identified by protein MutS or MutS homologues (MSHs) after replication. DNA excision during MMR is initiated at single-strand breaks (SSBs) in vitro, and several redundant processes have been observed in reconstituted systems which either require a pre-formed SSB in the DNA or require a mismatch-activated nicking endonuclease to introduce a SSB in order to initiate MMR. However, the conditions under which each of these processes may actually occur in living cells have remained obscured by the limitations of current MMR assays. Here we use a novel assay involving chemically-modified oligonucleotide probes to insert targeted DNA 'mismatches' directly into the genome of living bacteria to interrogate their replication-coupled repair processes quantitatively in a strand-, orientation-, and mismatched nucleotide-specific manner. This 'semi-protected oligonucleotide recombination' (SPORE) assay reveals direct evidence in Escherichia coli of an efficient endonuclease-independent MMR process on the lagging strand-a mechanism that has long-since been considered for lagging-strand repair but never directly shown until now. We find endonuclease-independent MMR is coordinated asymmetrically with respect to the replicating DNA-directed primarily from 3'- of the mismatch-and that repair coordinated from 3'- of the mismatch is in fact the primary mechanism of lagging-strand MMR. While further work is required to explore and identify the molecular requirements for this alternative endonuclease-independent MMR pathway, these findings made possible using the SPORE assay are the first direct report of this long-suspected mechanism in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app