Add like
Add dislike
Add to saved papers

Total Stereoselective Michael Addition of N- and S- Nucleophiles to a d-Erythrosyl 1,5-Lactone Derivative. Experimental and Theoretical Studies Devoted to the Synthesis of 2,6-Dideoxy-4-functionalized-d- ribono-hexono-1,4-lactone.

The synthesis of a 1,5-lactone 2,4- O-alkylidene-d-erythrose derivative was found to be a highly stereoselective template in Michael addition trough the reaction of a d-erythrosyl 1,5-lactone derivative with nitrogen and sulfur nucleophiles. The sulfur adducts formed are 1 (d-erythrose derivative):1 (nucleophile), and the nitrogen adducts are 1:2. Both were then treated under HCl to give 2,6-dideoxy-4-functionalized-d- ribono-hexono-1,4-lactone by a reaction cascade in high overall yield. Reaction's scale up even improves the yield. The theoretical and computational results clearly explain the origin of the stereoselectivity, and the energetic course of reactions starting with nitrogen and sulfide nucleophiles. Considering that the 1,4-lactones obtained in this work offer a new molecular scaffold for organic synthesis, these new results provide a solid theoretical platform that can be used to speed up synthesis of other derivatives in a stereo- and regioselective way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app