Add like
Add dislike
Add to saved papers

Au 36 (SePh) 24 nanomolecules: synthesis, optical spectroscopy and theoretical analysis.

Here, we report the synthesis of selenophenol (HSePh) protected Au36(SePh)24 nanomolecules via a ligand-exchange reaction of 4-tert-butylbenzenethiol (HSPh-tBu) protected Au36(SPh-tBu)24 with selenophenol, and its spectroscopic and theoretical analysis. Matrix assisted laser desorption ionization (MALDI) mass spectrometry, electrospray ionization (ESI) mass spectrometry and optical characterization confirm that the composition of the as synthesized product is predominantly Au36(SePh)24 nanomolecules. Size exclusion chromatography (SEC) was employed to isolate the Au36(SePh)24 and temperature dependent optical absorption studies and theoretical analysis were performed. Theoretically, an Independent Component Maps of Oscillator Strength (ICM-OS) analysis of simulated spectra shows that the enhancement in absorption intensity in Au36(SePh)24 with respect to Au36(SPh)24 can be ascribed to the absence of interference and/or increased long-range coupling between interband metal core and ligand excitations. This work demonstrates and helps to understand the effect of Au-Se bridging on the properties of gold nanomolecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app