Add like
Add dislike
Add to saved papers

Decreased epithelial and sputum miR-221-3p associates with airway eosinophilic inflammation and CXCL17 expression in asthma.

Airway eosinophilic inflammation is a key feature of type 2 high asthma. The role of epithelial microRNA (miR) in airway eosinophilic inflammation remains unclear. We examined the expression of miR-221-3p in bronchial brushings, induced sputum, and plasma from 77 symptomatic, recently diagnosed, steroid-naive subjects with asthma and 36 healthy controls by quantitative PCR and analyzed the correlation between miR-221-3p expression and airway eosinophilia. We found that epithelial, sputum, and plasma miR-221-3p expression was significantly decreased in subjects with asthma. Epithelial miR-221-3p correlated with eosinophil in induced sputum and bronchial biopsies, fraction of exhaled nitric oxide, blood eosinophil, epithelial gene signature of type 2 status, and methacholine provocative dosage required to cause a 20% decline in forced expiratory volume in the first second in subjects with asthma. Sputum miR-221-3p also correlated with airway eosinophilia and was partially restored after inhaled corticosteroid treatment. Inhibition of miR-221-3p expression suppressed chemokine (C-C motif) ligand (CCL) 24 (eotaxin-2), CCL26 (eotaxin-3), and periostin (POSTN) expression in BEAS-2B bronchial epithelial cells. We verified that chemokine (C-X-C motif) ligand (CXCL) 17, an anti-inflammatory chemokine, is a target of miR-221-3p, and epithelial CXCL17 expression significantly increased in asthma. CXCL17 inhibited CCL24, CCL26, and POSTN expression via the p38 MAPK pathway. Airway overexpression of miR-221-3p exacerbated airway eosinophilic inflammation, suppressed CXCL17 expression, and enhanced CCL24, CCL26, and POSTN expression in house dust mite-challenged mice. Taken together, epithelial and sputum miR-221-3p are novel biomarkers for airway eosinophilic inflammation in asthma. Decreased epithelial miR-221-3p may protect against airway eosinophilic inflammation by upregulating anti-inflammatory chemokine CXCL17.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app