Add like
Add dislike
Add to saved papers

Applying optimization algorithms to tuberculosis antibiotic treatment regimens.

Introduction: Tuberculosis (TB), one of the most common infectious diseases, requires treatment with multiple antibiotics taken over at least 6 months. This long treatment often results in poor patient-adherence, which can lead to the emergence of multi-drug resistant TB. New antibiotic treatment strategies are sorely needed. New antibiotics are being developed or repurposed to treat TB, but as there are numerous potential antibiotics, dosing sizes and potential schedules, the regimen design space for new treatments is too large to search exhaustively. Here we propose a method that combines an agent-based multi-scale model capturing TB granuloma formation with algorithms for mathematical optimization to identify optimal TB treatment regimens.

Methods: We define two different single-antibiotic treatments to compare the efficiency and accuracy in predicting optimal treatment regimens of two optimization algorithms: genetic algorithms (GA) and surrogate-assisted optimization through radial basis function (RBF) networks. We also illustrate the use of RBF networks to optimize double-antibiotic treatments.

Results: We found that while GAs can locate optimal treatment regimens more accurately, RBF networks provide a more practical strategy to TB treatment optimization with fewer simulations, and successfully estimated optimal double-antibiotic treatment regimens.

Conclusions: Our results indicate surrogate-assisted optimization can locate optimal TB treatment regimens from a larger set of antibiotics, doses and schedules, and could be applied to solve optimization problems in other areas of research using systems biology approaches. Our findings have important implications for the treatment of diseases like TB that have lengthy protocols or for any disease that requires multiple drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app