Add like
Add dislike
Add to saved papers

Improving biocathode community multifunctionality by polarity inversion for simultaneous bioelectroreduction processes in domestic wastewater.

Chemosphere 2018 March
Bioelectrochemical systems (BESs) have been tentatively applied for wastewater treatment processes, but the complex composition of wastewater could lead to difficulties in establishing functional biofilm or result in performance instability. Few studies have investigated the enrichment of biocathode with domestic wastewater (DW) and the function. A biocathode with multi-pollutant removal capabilities was enriched based on polarity inverted bioanode, which was established with DW. The biocathode function was examined using model pollutants (nitrate, nitrobenzene and Acid Orange 7) supplemented as sole or mixed electron acceptors. When compared to the anaerobic control treatment, the biofilm demonstrated significantly enhanced reduction abilities in the open circuit. For the closed circuit, their removal efficiencies were further enhanced for both the sole and mixed substrates conditions. The bioanodes community structure and diversity markedly changed after operating for 50 d as biocathodes. The biocathode multifunctionality and stability could be related to the maintenance of organic matters fermentative bacteria (mainly belonging to Bacteroidetes, Firmicutes and Synergistetes) and the enrichment of versatile pollutant-reducing bacteria (e.g. Pseudomonas, Thauera and Comamonas from Proteobacteria). Other pollutants, such as perchlorate, sulfate, heavy metals, and halogenated organics, may also work as potential electron acceptors. This study provides a new strategy to improve the biocathode community multifunctionality for simultaneous bioelectroreduction, which can be combined with other wastewater treatment processes in actual application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app