Add like
Add dislike
Add to saved papers

Antimicrobial resistance and underlying mechanisms in Staphylococcus aureus isolates.

OBJECTIVE: To investigate the antimicrobial susceptibility of 97 clinical Staphylococcus aureus (S. aureus) strains against 14 antimicrobials and corresponding resistance mechanisms.

METHODS: The antimicrobial susceptibility of the isolates was determined using a disk diffusion method and antimicrobial resistance genes were screened by polymerase chain reaction. Mutations responsible for ciprofloxacin and rifampicin resistance were investigated by polymerase chain reaction and DNA sequencing.

RESULTS: All isolates were found to be susceptible to vancomycin. Various rates of resistance to penicillin (83.5%), ampicillin (77.3%), erythromycin (63.9%), tetracycline (16.5%), amoxicillin/clavulanic acid (16.5%), ciprofloxacin (15.5%), trimethoprim/sulfamethoxazole (15.5%), oxacillin (13.4%), fusidic acid (12.4%), rifampin (6.2%), clindamycin (6.2%), gentamicin (6.2%) and mupirocin (5.2%) were determined. In addition, different combinations of resistance genes were identified among resistant isolates. Ciprofloxacin resistant isolates had mutations in codon 84 (Ser84Leu) and 106 (Gly106Asp) in the gyrA gene. Mutations in grlA were mostly related to Ser80Phe substitution. Leu466Ser mutation in the rpoB gene was detected in all rifampin resistant isolates. All methicillin resistant S. aureus isolates were SCCmec type V.

CONCLUSIONS: In conclusion, it was determined that the isolates were resistant to different classes of antimicrobials at varying rates and resistance was mediated by different genetic mechanisms. Therefore, continuous monitoring of resistance in S. aureus strains is necessary to control their resistance for clinically important antimicrobials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app