Add like
Add dislike
Add to saved papers

Combined effects of phase-shift and power distribution on efficiency of dual-high-frequency sonochemistry.

In an effort to increase the efficiency of sonochemical reactors, this study investigates a single-source, dual-high-frequency ultrasound reactor. Experiments were conducted with a variety of piezoelectric crystals and reactor components, and for each reactor design a range of power distributions and phase shifts between the two frequencies were evaluated. Certain dual-frequency configurations produced up to a threefold increase in sonochemical efficiency, while others yeilded no improvement over a single frequency. These results led to two significant findings. First, phase-shift had a strong effect on sonochemical efficiency for both harmonic and non-harmonic frequency combinations. Second, the most efficient dual-harmonic-frequency waveforms had a single peak per half-cycle, rather than two unique peaks. If dual-frequency, single-source ultrasound reactors are to become more efficient they must be able to consistently control the phase angle of and power distribution between harmonic waves to create an optimal waveform.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app