Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Spontaneous Microstructure Formation at Water/Paraffin Oil Interfaces.

An experimental investigation of spontaneous emulsification is proposed with a water drop pendant in a paraffin oil (PO) solution loaded with a surfactant (SPAN80). Optical microscopy in a transmission mode is employed for high-spatial-resolution image recording. The kinetics of spontaneous emulsification is studied. It is shown to generate a darkening of the drops because of interface modification with a characteristic time that depends upon the SPAN80 concentration. For low concentrations, spontaneous emulsification is slow and produces micrometer-sized droplets, whereas for large concentrations, it is fast and bush-like microstructures are observed. These microstructures increase in size and progressively invade the complete water/PO interfaces, detach, and finally migrate into the PO phase. This transport phenomenon withdraws water from the drops and leads to a gradual shrinking of their volume. At the end of this process, they appear as deformed objects surrounded by a loose membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app