Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Improved Ultrafiltration Method to Measure Drug Release from Nanomedicines Utilizing a Stable Isotope Tracer.

An important step in the early development of a nanomedicine formulation is the evaluation of stability and drug release in biological matrices. Additionally, the measurement of encapsulated and unencapsulated nanomedicine drug fractions is important for the determination of bioequivalence (pharmacokinetic equivalence) of generic nanomedicines. Unfortunately, current methods to measure drug release in plasma are limited, and all have fundamental disadvantages including non-equilibrium conditions and process-induced artifacts. The primary limitation of current ultrafiltration (and equilibrium dialysis) methods for separation of encapsulated and unencapsulated drug and determination of drug release is the difficulty in accurately differentiating protein bound and encapsulated drug. Since the protein binding of most drugs is high (>70%) and can change in a concentration- and time-dependent manner, it is very difficult to accurately account for the fraction of non-filterable drug that is encapsulated within the nanomedicine and how much is bound to protein. The method in this chapter is an improvement of existing ultrafiltration protocols for nanomedicine fractionation in plasma, in which a stable isotope tracer is spiked into a nanomedicine containing plasma sample in order to precisely measure the degree of plasma protein binding. Determination of protein binding then allows for accurate calculation of encapsulated and unencapsulated nanomedicine drug fractions, as well as free and protein-bound fractions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app