Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stability of Commercially Available Glucagon Formulation for Dual-Hormone Artificial Pancreas Clinical Use.

BACKGROUND: Available glucagon formulations are approved for immediate use after reconstitution for severe hypoglycemia emergency treatment. However, they are used in dual-hormone artificial pancreas (insulin and glucagon) studies through subcutaneous infusion pumps over 24 h. Chemical and physical stability of such glucagon use have not been reported in a comprehensive manner.

MATERIALS AND METHODS: Recombinant Glucagon DNA (Eli Lilly) was used. Compatibility and sterility of glucagon delivery through subcutaneous pump systems were verified. Glucagon degradation through liquid chromatography with tandem mass spectrometry (LC-MS/MS), fibrillation using intrinsic tryptophan fluorescence shift, and bioactivity through a cell-protein kinase A-based fluorescent bioassay were assessed over a range of different physical conditions (temperature, movement, and air bubbles).

RESULTS: Subcutaneous infusion pump systems administered glucagon in sterile conditions and with comparable accuracy to insulin delivery; mean absolute relative difference of actual versus expected weights were 1.2% ± 1.1% for glucagon and 1.1% ± 0.5% for insulin (P = 0.9). In comparison to freshly reconstituted samples, glucagon analyzed through LC-MS/MS was intact at 93.0% ± 7.0% after 24 h (P = 0.42) and 83.04% ± 6.0% after 48 h (P = 0.02) of incubation in pumps at 32°C. Peak wavelengths for Trp fluorescence did not differ from samples exposed to air bubbles or movement whether incubated (in infusion sets for 24 h at 32°) immediately or 24- and 48-h poststorage at 4°C (P = 0.10, 0.70 and 0.80, respectively) and no significant differences in bioactivity (shifts in EC50 ) were found for the same conditions (P = 0.13, 0.83, and 0.63).

CONCLUSION: Available glucagon formulations are chemically and physically stable, as well as compatible with delivery through subcutaneous infusion pumps over 24 h and can be used in long-term clinical trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app