Add like
Add dislike
Add to saved papers

A Quantitative Systems Pharmacology Platform to Investigate the Impact of Alirocumab and Cholesterol-Lowering Therapies on Lipid Profiles and Plaque Characteristics.

Reduction in low-density lipoprotein cholesterol (LDL-C) is associated with decreased risk for cardiovascular disease. Alirocumab, an antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly reduces LDL-C. Here, we report development of a quantitative systems pharmacology (QSP) model integrating peripheral and liver cholesterol metabolism, as well as PCSK9 function, to examine the mechanisms of action of alirocumab and other lipid-lowering therapies, including statins. The model predicts changes in LDL-C and other lipids that are consistent with effects observed in clinical trials of single or combined treatments of alirocumab and other treatments. An exploratory model to examine the effects of lipid levels on plaque dynamics was also developed. The QSP platform, on further development and qualification, may support dose optimization and clinical trial design for PCSK9 inhibitors and lipid-modulating drugs. It may also improve our understanding of factors affecting therapeutic responses in different phenotypes of dyslipidemia and cardiovascular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app