Statistical Geometrical Features for Microaneurysm Detection

Arati Manjaramkar, Manesh Kokare
Journal of Digital Imaging: the Official Journal of the Society for Computer Applications in Radiology 2018, 31 (2): 224-234
Automated microaneurysm (MA) detection is still an open challenge due to its small size and similarity with blood vessels. In this paper, we present a novel method which is simple, efficient, and real-time for segmenting and detecting MA in color fundus images (CFI). To do this, a novel set of features based on statistics of geometrical properties of connected regions, that can easily discriminate lesion and non-lesion pixels are used. For large-scale evaluation proposed method is validated on DIARETDB1, ROC, STARE, and MESSIDOR dataset. It proves robust with respect to different image characteristics and camera settings. The best performance was achieved on per-image evaluation on DIARETDB1 dataset with sensitivity of 88.09 at 92.65% specificity which is quite encouraging for clinical use.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"