Add like
Add dislike
Add to saved papers

Discrepancy Between Experimental and Theoretical Predictions of the Adiabaticity of Ti + +CH 3 OH.

The reaction between Ti+ and methanol (CH3 OH) is a model system for competition between activation of C-O, C-H, and O-H bonds and of the role of excited electronic pathways in catalytic processes. Herein, we use experimental kinetics, quantum chemical calculations, and statistical modeling to identify the critical features of the reaction's potential energy surface. Experimental kinetics data between 300 and 600 K shows the reaction largely proceeds through C-O bond activation, yielding TiOH+ and TiO+ . Products of the O-H activation pathway, TiOCH2 + and TiOCH3 + are minor, whereas C-H bond activation is not observed at thermal energies. Statistical modeling well-reproduces the experimental results and offers insight into the reaction mechanism. Notably, efficient spin-crossing along the C-O activation pathway is required to produce the observed product distribution, in contrast to a previous estimate of inefficient crossing based on calculation of a small spin-orbit coupling constant. This discrepancy highlights a potential limitation of simple models within the Landau-Zener framework, which are commonly used to calculate surface-crossing probabilities in reactive systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app