Add like
Add dislike
Add to saved papers

Left ventricular outflow tract velocity time integral outperforms ejection fraction and Doppler-derived cardiac output for predicting outcomes in a select advanced heart failure cohort.

BACKGROUND: Left ventricular outflow tract velocity time integral (LVOT VTI) is a measure of cardiac systolic function and cardiac output. Heart failure patients with low cardiac output are known to have poor cardiovascular outcomes. Thus, extremely low LVOT VTI may predict heart failure patients at highest risk for mortality.

METHODS: Patients with heart failure and extremely low LVOT VTI were identified from a single-center database. Baseline characteristics and heart failure related clinical outcomes (death, LVAD) were obtained at 12 months. Correlation between clinical endpoints and the following variables were analyzed: ejection fraction (EF), pulmonary artery systolic pressure (PASP), NYHA class, renal function, Doppler cardiac output (CO), and LVOT VTI.

RESULTS: Study cohort consisted of 100 patients. At the 12-month follow up period, 30 events (28 deaths, 2 LVADs) were identified. Occurrence of death and LVAD implantation was statistically associated with a lower LVOT VTI (p = 0.039) but not EF (p = 0.169) or CO (p = 0.217). In multivariate analysis, LVOT VTI (p = 0.003) remained statistically significant, other significant variables were age (p = 0.033) and PASP (p = 0.022). Survival analysis by LVOT VTI tertile demonstrated an unadjusted hazard ratio of 4.755 (CI 1.576-14.348, p = 0.006) for combined LVAD and mortality at one year.

CONCLUSIONS: Extremely low LVOT VTI strongly predicts adverse outcomes and identifies patients who may benefit most from advanced heart failure therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app