Add like
Add dislike
Add to saved papers

Ag-AgBr/TiO2/RGO nanocomposite: Synthesis, characterization, photocatalytic activity and aggregation evaluation.

Ag-AgBr/TiO2 supported on reduced graphene oxide (Ag-AgBr/TiO2/RGO) with different mass ratios of grapheme oxide (GO) to TiO2 were synthesized via a facile solvothermal-photo reduction method. Compared to the single-, two- and three-component nanocomposites, the four-component nanocomposite, Ag-AgBr/TiO2/RGO-1 with mass ratio of GO to TiO2 at 1%, exhibited a much higher photocatalytic activity for the degradation of penicillin G (PG) under white light-emitting diode (LED-W) irradiation. The PG degradation efficiency increased with the increase of mass ratio of GO to TiO2 from 0.2% to 1%, then it decreased with the increase of mass ratio of GO to TiO2 from 1% to 5%. The zeta potentials of RGO-nanocomposites became more negative with the presence of humic acid (HA) due to the negatively charged HA adsorption, resulting in the shift of points of zero charge to lower values of pH. The aggregations of nanocomposites were more significant due to the bridging effect of HA. Furthermore, the aggregated particle sizes were larger for RGO-nanocomposites compared to other nanoparticles, due to the bindings of the carboxylic and phenolic functional groups in HA with the oxygen-containing functional groups in the RGO-nanocomposites. The microfiltration (MF) membrane was effective for the nanocomposites separation. In the continuous flow through submerged membrane photoreactor (sMPR) system, backwashing operation could efficiently reduce membrane fouling and recover TiO2, and thus indirectly facilitate the PG removal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app