Add like
Add dislike
Add to saved papers

Oxygen-Deficient Titanium Dioxide Nanosheets as More Effective Polysulfide Reservoirs for Lithium-Sulfur Batteries.

In this work, oxygen-deficient anatase TiO2 nanosheets (A-TiO2-x NSs) are proposed as a substrate to improve the electrochemical properties of sulfur electrodes for lithium-sulfur (Li-S) batteries. The A-TiO2-x NSs are prepared by partly reducing pristine TiO2 nanosheets (A-TiO2 NSs) in NaBH4 solution. With some oxygen vacancies on the surface of the TiO2 nanosheets, A-TiO2-x NSs not only promote electronic transfer, but also act as more effective polysulfide reservoirs to minimize the dissolution of lithium polysulfides (LiPSs) than the A-TiO2 NSs control. Hence, upon utilization as modifiers for cathodes of Li-S batteries, the A-TiO2-x NSs-modified sulfur (A-TiO2-x NSs-S) cathode exhibits a higher reversible specific capacity and greater cycling performance and rate capability than the A-TiO2 NSs-modified one (A-TiO2 NSs-S). For example, A-TiO2-x NSs-S delivers an initial specific capacity of 1277.1 mAh g-1 at 0.1 C and maintains a stable Coulombic efficiency of approximately 99.2 % after the first five cycles; these values are higher than those of 997.3 mAh g-1 and around 96.7 %, respectively, for A-TiO2 NSs-S. The enhanced electrochemical properties of the A-TiO2-x NSs-S cathode can be ascribed mainly to the more effective adsorption of dissolvable and diffused LiPSs by the oxygen vacancies. Therefore, utilization of the structure of oxygen vacancies in Li-S batteries demonstrates great prospects for practical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app