Add like
Add dislike
Add to saved papers

Multi-scale, tailor-made heart simulation can predict the effect of cardiac resynchronization therapy.

BACKGROUND: The currently proposed criteria for identifying patients who would benefit from cardiac resynchronization therapy (CRT) still need to be optimized. A multi-scale heart simulation capable of reproducing the electrophysiology and mechanics of a beating heart may help resolve this problem. The objective of this retrospective study was to test the capability of patient-specific simulation models to reproduce the response to CRT by applying the latest multi-scale heart simulation technology.

METHODS AND RESULTS: We created patient-specific heart models with realistic three-dimensional morphology based on the clinical data recorded before treatment in nine patients with heart failure and conduction block treated by biventricular pacing. Each model was tailored to reproduce the surface electrocardiogram and hemodynamics of each patient in formats similar to those used in clinical practice, including electrocardiography (ECG), echocardiography, and hemodynamic measurements. We then performed CRT simulation on each heart model according to the actual pacing protocol and compared the results with the clinical data. CRT simulation improved the ECG index and diminished wall motion dyssynchrony in each patient. These results, however, did not correlate with the actual response. The best correlation was obtained between the maximum value of the time derivative of ventricular pressure (dP/dtmax ) and the clinically observed improvement in the ejection fraction (EF) (r=0.94, p<0.01).

CONCLUSIONS: By integrating the complex pathophysiology of the heart, patient-specific, multi-scale heart simulation could successfully reproduce the response to CRT. With further verification, this technique could be a useful tool in clinical decision making.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app