Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Small RNA sequencing reveals a role for sugarcane miRNAs and their targets in response to Sporisorium scitamineum infection.

BMC Genomics 2017 April 25
BACKGROUND: Sugarcane smut caused by Sporisorium scitamineum leads to a significant reduction in cane yield and sucrose content. MicroRNAs (miRNAs) play an important role in regulating plant responses to biotic stress. The present study was the first to use two sugarcane genotypes, YA05-179 (smut-resistant) and ROC22 (smut-susceptible), to identify differentially expressed miRNAs in sugarcane challenged with S. scitamineum by using high-throughput sequencing.

RESULTS: The predicted target gene number corresponding to known differentially expressed miRNAs in YA05-179 was less than that in ROC22, however most of them were in common. Expression of differential miRNAs under S. scitamineum challenge was mostly downregulated, with similar trends in the two varieties. Gene ontology (GO) analysis showed that the target gene classification of known miRNAs was similar to that of the newly identified miRNAs. These were mainly associated with cellular processes and metabolic processes in the biological process category, as well as combination and catalytic activity in the molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that these predicted target genes involved in a series of physiological and biochemical pathways or disease resistance-related physiological metabolism and signal transduction pathways, suggesting that the molecular interaction mechanism between sugarcane and S. scitamineum was a complex network system. These findings also showed certain predicted target genes of miR5671, miR5054, miR5783, miR5221, and miR6478 play roles in the mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and plant-pathogen interaction. Quantitative real-time PCR (qRT-PCR) analysis showed that majority of the known miRNAs and its predicted target genes followed a negatively regulated mode. Seven out of eight predicted target genes showed identical expression after 12 h treatment and reached the highest degree of matching at 48 h, indicating that the regulatory role of miRNAs on the target genes in sugarcane was maximized at 48 h after S. scitamineum challenge.

CONCLUSIONS: Taken together, our findings serve as evidence for the association of miRNA expression with the molecular mechanism underlying the pathogenesis of sugarcane smut, particularly on the significance of miRNA levels in relation to the cultivation of smut-resistant sugarcane varieties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app