Add like
Add dislike
Add to saved papers

Thymosin-α1 expands deficient IL-10-producing regulatory B cell subsets in relapsing-remitting multiple sclerosis patients.

BACKGROUND: B cells are key pathogenic effectors in multiple sclerosis (MS) and several therapies have been designed to restrain B cell abnormalities by directly targeting this lymphocyte population.

OBJECTIVES: Moving from our data showing a Toll-like receptor (TLR)7-driven dysregulation of B cell response in relapsing-remitting multiple sclerosis (RRMS) and having found a low serum level of Thymosin-α1 (Tα1) in patients, we investigated whether the addition of this molecule to peripheral blood mononuclear cells (PBMCs) would influence the expansion of regulatory B cell subsets, known to dampen autoimmune inflammation.

METHODS: Serum Tα1 level was measured by enzyme immunoassay. Cytokine expression was evaluated by Cytometric Bead Array (CBA), enzyme-linked immunosorbent assay (ELISA), and real-time reverse transcription polymerase chain reaction (RT-PCR). B cell subsets were analyzed by flow cytometry.

RESULTS: Tα1 pre-treatment induces an anti-inflammatory status in TLR7-stimulated RRMS PBMC cultures, reducing the secretion of pro-inflammatory interleukin (IL)-6, IL-8, and IL-1β while significantly increasing the regulatory IL-10 and IL-35. Indeed, Tα1 treatment enhanced expansion of CD19+ CD24+ CD38hi transitional-immature and CD24low/neg CD38hi plasmablast-like regulatory B cell subsets, which likely inhibit both interferon (IFN)-γ and IL-17 production.

CONCLUSION: Our study reveals a deficient ability of B cells from MS patients to differentiate into regulatory subsets and unveils a novel anti-inflammatory and repurposing potential for Tα1 in MS targeting B cell response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app