Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A meta-analysis reveals complex regulatory properties at Taf14-repressed genes.

BMC Genomics 2017 Februrary 17
BACKGROUND: Regulation of gene transcription in response to stress is central to a cell's ability to cope with environmental challenges. Taf14 is a YEATS domain protein in S.cerevisiae that physically associates with several transcriptionally relevant multisubunit complexes including the general transcription factors TFIID and TFIIF and the chromatin-modifying complexes SWI/SNF, INO80, RSC and NuA3. TAF14 deletion strains are sensitive to a variety of stresses suggesting that it plays a role in the transcriptional stress response.

RESULTS: In this report we survey published genome-wide transcriptome and occupancy data to define regulatory properties associated with Taf14-dependent genes. Our transcriptome analysis reveals that stress related, TATA-containing and SAGA-dependent genes were much more affected by TAF14 deletion than were TFIID-dependent genes. Comparison of Taf14 and multiple transcription factor occupancy at promoters genome-wide identified a group of proteins whose occupancy correlates with that of Taf14 and whose proximity to Taf14 suggests functional interactions. We show that Taf14-repressed genes tend to be extensively regulated, positively by SAGA complex and the stress dependent activators, Msn2/4 and negatively by a wide number of repressors that act upon promoter chromatin and TBP.

CONCLUSIONS: Taken together our analyses suggest a novel role for Taf14 in repression and derepression of stress induced genes, most probably as part of a regulatory network which includes Cyc8-Tup1, Srb10 and histone modifying enzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app