Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Discrimination of frequency modulated sweeps by mice.

Mice often produce ultrasonic vocalizations (USVs) that sweep upwards in frequency from around 60 to around 80 kHz and downwards in frequency from 80 to 60 kHz. Whether or not these USVs are used for communication purposes is still unknown. Here, mice were trained and tested using operant conditioning procedures and positive reinforcement to discriminate between synthetic upsweeps and downsweeps. The stimuli varied in bandwidth, duration, and direction of sweep. The mice performed significantly worse when discriminating between background and test stimuli when the stimuli all occupied the same bandwidths. Further, the mice's discrimination performance became much worse for stimuli that had durations similar to those natural vocalizations of the mice. Sweeps composed of different frequency ranges and longer durations had improved discrimination. These results collected using artificial stimuli created to mimic natural USVs indicate that the bandwidth of the vocalizations may be much more important for communication than the frequency contours of the vocalizations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app