Add like
Add dislike
Add to saved papers

All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging.

A novel all-optical akinetic ultrasound sensor, consisting of a rigid, fiber-coupled Fabry-Pérot etalon with a transparent central opening is presented. The sensing principle relies exclusively on the detection of pressure-induced changes of the refractive index in the fluid filling the Fabry-Pérot cavity. This enables resonance-free, inherently linear signal detection over a broad bandwidth. We demonstrate that the sensor achieves a exceptionally low peak noise equivalent pressure (NEP) values of 2 Pa over a 20 MHz measurement bandwidth (without signal averaging), while maintaining a flat frequency response, and a detection bandwidth up to 22.5 MHz (-6 dB). The measured large full field of view of the sensor is 2.7 mm × 1.3 mm and the dynamic range is [Formula: see text] or 63 dB at 20 MHz bandwidth. For different required amplitude ranges the upper amplitude detection limit can be customized from at least 2 kPa to 2 MPa by using cavity mirrors with a lower optical reflectivity. Imaging tests on a resolution target and on biological tissue show the excellent suitability of the akinetic sensor for optical resolution photoacoustic microscopy (OR-PAM) applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app