Add like
Add dislike
Add to saved papers

One-pot synthesis of folic acid encapsulated upconversion nanoscale metal organic frameworks for targeting, imaging and pH responsive drug release.

In this work, a new theranostic nanoplatform is developed to construct an anticancer drug carrier by integrating the distinct advantages of upconversion nanoparticles (UCNPs) and metal organic frameworks (MOFs) encapsulated with a targeting ligand. Here NaYF4 :Yb3+ ,Er3+ is chosen as an upconversion nanoparticle for its high luminescence properties. Then, folic acid encapsulated Zeolitic Imidazolate Framework-8 (ZIF-8) is directly coated on UCNPs in one step to form a monodispersed core-shell structured nanocomposite (labeled as UCNPs@ZIF-8/FA). The synthesized upconversion nanoscale MOFs (NMOFs) are simultaneously used as a targeted anticancer drug carrier and in cellular imaging. The UCNP@ZIF-8/FA nanocomposites are found to be nontoxic towards the human cervix adenocarcinoma (HeLa) and mouse fibroblast (L929) cell lines via a cell viability assay. It is worthwhile noting that, the anticancer drug 5-fluorouracil (5-FU) is absorbed into UCNP@ZIF-8/FA nanocomposites (loading amount 685 mg g-1 ) and also pH responsive drug release is observed. The as-prepared 5-FU loaded UCNP@ZIF-8/FA nanocomposites exhibited greater cytotoxicity towards HeLa cells due to the folate receptor-mediated endocytosis. Our study highlights the potential of developing multifunctional upconversion NMOFs for simultaneous targeted cellular imaging with delivery of anticancer drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app