Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Data-Driven Methods for the Determination of Anterior-Posterior Motion in PET.

Physiological motion combined with elongated scanning times in PET leads to image degradation and quantification errors. Correction approaches usually require 1-D signals that can be obtained with hardware-based or data-driven methods. Most of the latter are optimized or limited to capture internal motion along the superior-inferior (S-I) direction. In this work we present methods for also extracting anterior-posterior (A-P) motion from PET data and propose a set of novel weighting mechanisms that can be used to emphasize certain lines-of-response (LORs) for an increased sensitivity and better signal-to-noise ratio (SNR). The proper functioning of the methods was verified in a phantom experiment. Further, their application to clinical [18F ]-FDG-PET data of 72 patients revealed that using the weighting mechanisms leads to signals with significantly higher spectral respiratory weights, i.e. signals with higher quality. Information about multi-dimensional motion is contained in PET data and can be derived with data-driven methods. Motion models or correction techniques such as respiratory gating might benefit from the proposed methods as they allow to describe the three-dimensional movements of PET-positive structures more precisely.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app