Add like
Add dislike
Add to saved papers

Investigating regulatory signatures of human autophagy related gene 5 (ATG5) through functional in silico analysis.

Meta Gene 2016 September
Autophagy is an essential, homeostatic process which removes damaged cellular proteins and organelles for cellular renewal. ATG5, a part of E3 ubiquitin ligase-like complex (Atg12-Atg5/Atg16L1), is a key regulator involved in autophagosome formation - a crucial phase of autophagy. In this study, we used different in silico methods for comprehensive analysis of ATG5 to investigate its less explored regulatory activity. We have predicted various physico-chemical parameters and two possible transmembrane models that helped in exposing its functional regions. Twenty four PTM sites and 44 TFBS were identified which could be targeted to modulate the autophagy pathway. Furthermore, LD analysis identified 3 blocks of genotyped SNPs and 2 deleterious nsSNPs that may have damaging impact on protein function and thus could be employed for carrying genome-wide association studies. In conclusion, the information obtained in this study could be helpful for better understanding of regulatory roles of ATG5 and provides a base for its implication in population-based studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app